

Spatial Patterns in Texas Lotic Fish Communities

MICHAEL LANE*, MUSTAFA MOKRECH,
STEPHEN CURTIS,
JENNY OAKLEY, AND GEORGE GUILLEN

School of Science and Computer Engineering, University of Houston-Clear Lake, Houston, TX 77058
Environmental Institute of Houston, University of Houston-Clear Lake, Houston, TX 77058

Factors Impacting Rivers and Streams

- Industrialization, urbanization, and agriculture
 - Reservoir construction
 - Increased freshwater diversions
 - Additional wastewater loads
 - Pollution
 - Dredging
 - Saline intrusions
 - Proliferation of exotic species

The National Rivers and Streams Assessment

- ► First implemented by the EPA in 2008-2009
 - 55% of the nation's rivers and streams did not support healthy populations of aquatic life⁽¹⁾
- Second NRSA project completed 2013-2014
 - The Environmental Institute of Houston (EIH) conducted these surveys across Texas in collaboration with TCEQ

Expectations

- ► Fish Communities
 - Vary considerably across Texas
 - Shift towards greater evenness in statewide diversity⁽¹⁾
- Longitudinal Gradient
 - Exists along western Gulf slope drainages⁽²⁾

- Land use/Land cover
 - Land disturbances (i.e. development and agriculture) negatively affect fish communities⁽³⁾

Objectives

- Describe fish community metrics in Texas watersheds and review historic trends
- Evaluate potential longitudinal gradients observed across sample sites
- Assess the relationship between fish community metrics and land use/land cover

Site Selection

- Sampling frame derived from National Hydrography Dataset (NHD); randomly selected sites classified as "boatable" or "wadeable"
- Each site was located with GPS coordinates determined by the EPA

Sampling Methods

- ► Fish Community
- Benthic macroinvertebrates and periphyton
- Streamflow
- Water quality
- Physical Habitat
 - Instream
 - Riparian
 - Slope & Bearing

Boatable

Small Non-wadeable River: Channel Width < 12.5 m Fish Entire Reach (40 x Channel Width) FLOW

Medium Non-wadeable River: Channel Width 12.5 m to 25 m

Large Non-wadeable River: Channel Width > 25 m

Initial fishing reach would stop at Transect H and equal 560 meters.

*At medium & large rivers, if < 500 individuals have been collected after minimum sampling reach, continue fishing to next transect (alternating banks) until 500 individuals are collected or Transect K is reached, (10 subreaches fished)

Wadeable

Large Wadeable Stream: Channel Width > 25 m

500 meters would fall between Transects G and H.

Initial fishing reach would stop at Transect H and equal 560 meters.

*At medium & large streams, if < 500 individuals have been collected after minimum sampling reach, continue fishing to next transect (alternating banks) until 500 individuals are collected or Transect K is reached, (10 subreaches fished)

Fish Community Metrics

- Species richness and Shannon's diversity were computed for each sample site
- Indexes of biotic integrity (IBIs) adjusted for each ecoregion were calculated for each site⁽¹⁾

Historic Trends

- Relative proportions of families were computed for each drainage and compared:
 - To each other with respect to our data
 - To (approximated) historical proportions from 1953 and 1986⁽¹⁾

Longitudinal Gradients

- Conducted regressions for species richness and diversity against longitude
 - Analyzed all sites as a whole
 - Analyzed sites separated into drainages

GIS Analysis

- Watersheds relative to each sample site were mapped using ArcGIS software
- Upstream drainage area as well as land use/land cover (LULC) were examined for each site's watershed

Comparing fish communities to LULC

Principal Component Analysis (PCA) conducted to ordinate sites and basins relative to LULC

- Percent disturbed land was regressed against fish community metrics
 - Species richness
 - Shannon's diversity
 - Index of Biotic Integrity (%)

Community Composition

- In 51 sampling events:
 - 28,442 individuals
 - 20 families
 - 45 genera
 - 91 species
- Richness rangedfrom 2 to 25
- Diversity ranged from 0.37 to 2.70

Index of Biotic Integrity

	Sabine	Neches	Trinity	Brazos	Colorado	SanGuad	Nueces
Limited			4	2	1		
Intermediate	2	1	1	6	4	4	2
High	1	4	2	4	2	1	1
Exceptional			2	2	3		1

Historical Comparison

West

Scatterplot of Richness vs Longitude

Scatterplot of Richness vs Longitude

PCA: LULC

Land Disturbance

Diversity Regression

Summary

- ► Fish community metrics
 - Richness: 2-25, Diversity: 0.37-2.70
 - Examining diversity across our sample sites indicates a shift towards evenness in statewide diversity
 - Variable findings in regards to historical trends

Summary

- Longitudinal gradients
 - Significant longitudinal gradients observed in Brazos and Colorado drainages
 - Attributable to greater longitudinal span and potentially the distribution of sample sites across a region of steadily shifting topography

Summary

- Land use/land cover
 - Sabine/Neches: forested, wetlands, open water
 - Trinity/Brazos: agriculture, development
 - Colorado/Nueces: arid shrubland

Future Work

- ► As observed in other studies^(1,2), LULC will be analyzed within a buffer of rivers/streams
- Physical habitat data collected at sites:
 - Mesohabitat
 - Riparian zones
- Additional analysis required to examine:
 - Hydrology
 - Gear bias
 - Historical data

Acknowledgements

- We would like to especially thank
 - The EPA and TCEQ for funding and project oversight
 - Robert Cook
 - Christine Kolbe
 - Michele Blair
 - EIH staff, students, and interns for site reconnaissance, trip preparation, and many long, hot days collecting data in the field.

National Wetland Condition Assessment 2016

- EIH will be conducting these surveys this coming summer – those interested contact:
 - Jenny Oakley oakley@uhcl.edu

